论文标题
部分可观测时空混沌系统的无模型预测
Network comparison via encoding, decoding, and causality
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Quantifying the relations (e.g., similarity) between complex networks paves the way for studying the latent information shared across networks. However, fundamental relation metrics are not well-defined between networks. As a compromise, prevalent techniques measure network relations in data-driven manners, which are inapplicable to analytic derivations in physics. To resolve this issue, we present a theory for obtaining an optimal characterization of network topological properties. We show that a network can be fully represented by a Gaussian variable defined by a function of the Laplacian, which simultaneously satisfies network-topology-dependent smoothness and maximum entropy properties. Based on it, we can analytically measure diverse relations between complex networks. As illustrations, we define encoding (e.g., information divergence and mutual information), decoding (e.g., Fisher information), and causality (e.g., Granger causality and conditional mutual information) between networks. We validate our framework on representative networks (e.g., random networks, protein structures, and chemical compounds) to demonstrate that a series of science and engineering challenges (e.g., network evolution, embedding, and query) can be tackled from a new perspective. An implementation of our theory is released as a multi-platform toolbox.