论文标题

在$ \ mathbb {r}^3 $上存在boussinesq方程的爆炸解决方案,并具有耗散温度

Existence of blowup solutions to Boussinesq equations on $\mathbb{R}^3$ with dissipative temperature

论文作者

Gao, Chen, Zhang, Liqun, Zhang, Xianliang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The three-dimensional incompressible Boussinesq system is one of the important equations in fluid dynamics. The system describes the motion of temperature-dependent incompressible flows. And the temperature naturally has diffusion. Recently, Elgindi, Ghoul and Masmoudi constructed a $C^{1,α}$ finite time blow-up solutions for Euler systems with finite energy. Inspired by their works, we constructed $C^{1,α}$ finite time blow-up solution for Boussinesq equations where the temperature has diffusion and finite energy. Generally speaking, the diffusion of temperature smooths the solution of the system which is against the formations of singularity. The main difficulty is that the Laplace operator of the temperature equation is not coercive under the Sobolev weighted norm introduced by Elgindi. We introduced a new time depending scaling formulation and new weighted Sobolev norms, under which we obtain the nonlinear estimate. The new norm is well-coupled with the original norm, which enables us to finish the proof.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源