论文标题

删除图像操纵的监督属性信息删除和重建

Supervised Attribute Information Removal and Reconstruction for Image Manipulation

论文作者

Li, Nannan, Plummer, Bryan A.

论文摘要

属性操作的目的是控制给定图像中指定的属性。先前的工作通过学习每个属性的分解表示形式来解决此问题,以使其能够操纵针对目标属性的编码源属性。但是,编码的属性通常与相关的图像内容相关。因此,源属性信息通常可以隐藏在分离的功能中,从而导致不需要的图像编辑效果。在本文中,我们提出了一个属性信息删除和重建(AIRR)网络,该网络可以通过学习如何完全删除属性信息,创建属性排除的功能,然后学会将所需属性直接注入重建图像中。我们在四个不同的数据集上评估了我们的方法,其中包括多种属性,包括DeepFashion合成,DeepFashion Fashion Fine-Graine属性,Celeba和Celeba-HQ,我们的模型将属性操作的准确性和TOP-K检索率提高了10%,平均在上班上。一项用户研究还报告说,在多达76%的病例中,AIRR操纵图像比先前的工作更受欢迎。

The goal of attribute manipulation is to control specified attribute(s) in given images. Prior work approaches this problem by learning disentangled representations for each attribute that enables it to manipulate the encoded source attributes to the target attributes. However, encoded attributes are often correlated with relevant image content. Thus, the source attribute information can often be hidden in the disentangled features, leading to unwanted image editing effects. In this paper, we propose an Attribute Information Removal and Reconstruction (AIRR) network that prevents such information hiding by learning how to remove the attribute information entirely, creating attribute excluded features, and then learns to directly inject the desired attributes in a reconstructed image. We evaluate our approach on four diverse datasets with a variety of attributes including DeepFashion Synthesis, DeepFashion Fine-grained Attribute, CelebA and CelebA-HQ, where our model improves attribute manipulation accuracy and top-k retrieval rate by 10% on average over prior work. A user study also reports that AIRR manipulated images are preferred over prior work in up to 76% of cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源