论文标题
由混合超导装置制成的非本地量子热发动机
Nonlocal quantum heat engines made of hybrid superconducting devices
论文作者
论文摘要
我们讨论了一种量子热机,该量子机器从热驱动的双量子点与正常和超导储层产生动力。点之间的能量交换是由电子电子相互作用介导的。我们可以区分设备操作模式中的三个主要机制。在Andreev隧道方案中,在零和两个粒子状态的相干叠加的情况下,能量流动。尽管Andreev工艺具有内在的电子孔对称性,但我们发现热发动机效率随着耦合到超导储层的增加而增加。第二种机制发生在准粒子运输方案中。在这里,由于存在超导间隙以及差距边缘周围状态的电子密度的强能量依赖性,我们获得了巨大的效率。最后,在第三条制度中,安德里夫工艺与准颗粒隧道之间存在竞争。总的来说,我们的结果强调了配对隧道和结构化带谱的重要性,以准确地表征正常的效率耦合点系统中的热发动机性能。
We discuss a quantum thermal machine that generates power from a thermally driven double quantum dot coupled to normal and superconducting reservoirs. Energy exchange between the dots is mediated by electron-electron interactions. We can distinguish three main mechanisms within the device operation modes. In the Andreev tunneling regime, energy flows in the presence of coherent superposition of zero- and two-particle states. Despite the intrinsic electron-hole symmetry of Andreev processes, we find that the heat engine efficiency increases with increasing coupling to the superconducting reservoir. The second mechanism occurs in the regime of quasiparticle transport. Here we obtain large efficiencies due to the presence of the superconducting gap and the strong energy dependence of the electronic density of states around the gap edges. Finally, in the third regime there exists a competition between Andreev processes and quasiparticle tunneling. Altogether, our results emphasize the importance of both pair tunneling and structured band spectrum for an accurate characterization of the heat engine properties in normal-superconducting coupled dot systems.