论文标题

使用平面和视差几何形状的单眼深度和结构的联合预测

Joint Prediction of Monocular Depth and Structure using Planar and Parallax Geometry

论文作者

Xing, Hao, Cao, Yifan, Biber, Maximilian, Zhou, Mingchuan, Burschka, Darius

论文摘要

在接受高质量的基础真相(如LiDAR数据)培训时,监督的学习深度估计方法可以实现良好的性能。但是,LIDAR只能生成稀疏的3D地图,从而导致信息丢失。每个像素获得高质量的地面深度数据很难获取。为了克服这一限制,我们提出了一种新的方法,将有前途的平面和视差几何管道与深度信息与U-NET监督的学习网络相结合的结构信息结合在一起,与现有的基于流行的学习方法相比,这会导致定量和定性的改进。特别是,在两个大规模且具有挑战性的数据集上评估了该模型:Kitti Vision Benchmark和CityScapes数据集,并在相对错误方面取得了最佳性能。与纯深度监督模型相比,我们的模型在薄物体和边缘的深度预测上具有令人印象深刻的性能,并且与结构预测基线相比,我们的模型的性能更加强大。

Supervised learning depth estimation methods can achieve good performance when trained on high-quality ground-truth, like LiDAR data. However, LiDAR can only generate sparse 3D maps which causes losing information. Obtaining high-quality ground-truth depth data per pixel is difficult to acquire. In order to overcome this limitation, we propose a novel approach combining structure information from a promising Plane and Parallax geometry pipeline with depth information into a U-Net supervised learning network, which results in quantitative and qualitative improvement compared to existing popular learning-based methods. In particular, the model is evaluated on two large-scale and challenging datasets: KITTI Vision Benchmark and Cityscapes dataset and achieve the best performance in terms of relative error. Compared with pure depth supervision models, our model has impressive performance on depth prediction of thin objects and edges, and compared to structure prediction baseline, our model performs more robustly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源