论文标题

下一次购买预测的顺序推荐模型

Sequential Recommendation Model for Next Purchase Prediction

论文作者

Chen, Xin, Reibman, Alex, Arora, Sanjay

论文摘要

在提供当代数字营销经验时,建议的及时性和上下文准确性越来越重要。传统的推荐系统(RS)通过考虑过去的购买来向用户提出相关但时间不变的项目。这些建议仅将其映射到客户的一般偏好,而不是在购买之前的客户的特定需求。相比之下,考虑交易,购买或经验以衡量不断发展的偏好的RSS可以为客户提供更明显和有效的建议:顺序RSS不仅受益于对用户当前需求的更好的行为理解,而且还可以更好地预测能力。在本文中,我们通过利用46K持卡人的270万信用卡交易的生产数据集来证明和对顺序推荐系统的有效性。该方法首先在原始交易数据上采用自动编码器,并将观察到的交易编码提交给基于GRU的顺序模型。连续模型与现有研究一致,在样本外测试集中产生一个@1的地图。我们还讨论了使用顺序RS嵌入实时预测的含义,该rs nexus是可扩展的,低延迟的基于事件的数字体验体系结构。

Timeliness and contextual accuracy of recommendations are increasingly important when delivering contemporary digital marketing experiences. Conventional recommender systems (RS) suggest relevant but time-invariant items to users by accounting for their past purchases. These recommendations only map to customers' general preferences rather than a customer's specific needs immediately preceding a purchase. In contrast, RSs that consider the order of transactions, purchases, or experiences to measure evolving preferences can offer more salient and effective recommendations to customers: Sequential RSs not only benefit from a better behavioral understanding of a user's current needs but also better predictive power. In this paper, we demonstrate and rank the effectiveness of a sequential recommendation system by utilizing a production dataset of over 2.7 million credit card transactions for 46K cardholders. The method first employs an autoencoder on raw transaction data and submits observed transaction encodings to a GRU-based sequential model. The sequential model produces a MAP@1 metric of 47% on the out-of-sample test set, in line with existing research. We also discuss implications for embedding real-time predictions using the sequential RS into Nexus, a scalable, low-latency, event-based digital experience architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源