论文标题
RTN:用于冠状动脉血管造影血管造影级图像质量评估的增强变压器网络
RTN: Reinforced Transformer Network for Coronary CT Angiography Vessel-level Image Quality Assessment
论文作者
论文摘要
冠状动脉血管造影(CCTA)易受各种扭曲(例如伪影和噪声)的影响,这严重损害了心血管疾病的确切诊断。适当的CCTA血管级图像质量评估(CCTA VIQA)算法可用于降低错误诊断的风险。 CCTA VIQA的首要挑战是,确定最终质量的冠状动脉本地部分很难找到。为了应对挑战,我们将CCTA VIQA作为多种稳定学习(MIL)问题,并利用基于变压器的MIL主链(称为T-MIL),以将沿冠状动脉中心线的多个实例汇总为最终质量。但是,并非所有实例都提供最终质量的信息。有一些质量 - 无关/否定实例介入确切的质量评估(例如,在情况下仅涵盖背景或冠状动脉的实例是无法识别的)。因此,我们提出了一个基于渐进的增强学习的实例丢弃模块(称为PRID),以逐步删除CCTA VIQA的质量 - iRrex-relevant/否定实例。基于上述两个模块,我们建议基于端到端优化的自动CCTA VIQA加强变压器网络(RTN)。广泛的实验结果表明,我们提出的方法实现了现实世界中CCTA数据集的最先进性能,超过了以前的MIL方法。
Coronary CT Angiography (CCTA) is susceptible to various distortions (e.g., artifacts and noise), which severely compromise the exact diagnosis of cardiovascular diseases. The appropriate CCTA Vessel-level Image Quality Assessment (CCTA VIQA) algorithm can be used to reduce the risk of error diagnosis. The primary challenges of CCTA VIQA are that the local part of coronary that determines final quality is hard to locate. To tackle the challenge, we formulate CCTA VIQA as a multiple-instance learning (MIL) problem, and exploit Transformer-based MIL backbone (termed as T-MIL) to aggregate the multiple instances along the coronary centerline into the final quality. However, not all instances are informative for final quality. There are some quality-irrelevant/negative instances intervening the exact quality assessment(e.g., instances covering only background or the coronary in instances is not identifiable). Therefore, we propose a Progressive Reinforcement learning based Instance Discarding module (termed as PRID) to progressively remove quality-irrelevant/negative instances for CCTA VIQA. Based on the above two modules, we propose a Reinforced Transformer Network (RTN) for automatic CCTA VIQA based on end-to-end optimization. Extensive experimental results demonstrate that our proposed method achieves the state-of-the-art performance on the real-world CCTA dataset, exceeding previous MIL methods by a large margin.