论文标题
在KPC量表II上解密无线电星形成相关性。集成的红外Radio连续体和星形形成 - 无线电连续性相关性
Deciphering the radio star formation correlation on kpc scales II. The integrated infrared-radio continuum and star formation - radio continuum correlations
论文作者
论文摘要
鉴于星系中宇宙射线电子的多种能量损失机制,红外线的紧密度 - 无线电连续性相关性令人惊讶。我们扩展了Vollmer等人的银河系磁盘的分析模型。 (2017年)包括简化同步加速器发射率的处方。局部螺旋星系,低Z星脉星系,高Z主序列星形和高Z星脉星系的银河气盘被视为湍流的块状积聚磁盘。磁场强度取决于湍流动能和磁能密度之间的均衡。我们的基金模型既不包括银河风也不包括CR电子辅助模型,它重现了大多数星系(〜70%)的观察到的无线电连续体。除地方螺旋星系外,快速银河风可能会使冲突的模型与观察结果一致。观察到的IR无线电相关性由模型在所有数据集的模型和数据的关节不确定性的2 Sigma中复制。该模型与〜4 Sigma内观察到的SFR射电相关性一致。 CR颗粒和磁场之间的能量平台仅在我们的主序列星系模型中大致保持。如果假定CR电子量热计,则IR无线电相关性的斜率显着变平。在星系星系中,逆变型(IC)损失并不是主要的,因为在这些星系中,不仅气体密度,而且湍流速度色散也高于正常星形星系。然后,湍流动力和磁场能密度之间的平气导致非常高的磁场强度和非常短的同步加速器时间尺度。 150 MHz和1.4 GHz的模型SFR无线电相关的指数非常接近一个。
Given the multiple energy loss mechanisms of cosmic ray electrons in galaxies, the tightness of the infrared - radio continuum correlation is surprising. We extended the analytical model of galactic disks of Vollmer et al. (2017) by including a simplified prescription for the synchrotron emissivity. The galactic gas disks of local spiral galaxies, low-z starburst galaxies, high-z main sequence starforming, and high-z starburst galaxies are treated as turbulent clumpy accretion disks. The magnetic field strength is determined by the equipartition between the turbulent kinetic and the magnetic energy densities. Our fiducial model, which neither includes galactic winds nor CR electron secondaries, reproduces the observed radio continuum SEDs of most (~70%) of the galaxies. Except for the local spiral galaxies, fast galactic winds can potentially make the conflicting models agree with observations. The observed IR - radio correlations are reproduced by the model within 2 sigma of the joint uncertainty of model and data for all datasets. The model agrees with the observed SFR - radio correlations within ~4 sigma. Energy equipartition between the CR particles and the magnetic field only approximately holds in our models of main sequence starforming galaxies. If a CR electron calorimeter is assumed, the slope of the IR - radio correlation flattens significantly. Inverse Compton (IC) losses are not dominant in the starburst galaxies because in these galaxies not only the gas density but also the turbulent velocity dispersion is higher than in normally starforming galaxies. Equipartition between the turbulent kinetic and magnetic field energy densities then leads to very high magnetic field strengths and very short synchrotron timescales. The exponents of our model SFR - radio correlations at 150 MHz and 1.4 GHz are very close to one.