论文标题
Houma Alliance的新数据库书籍古代手写字符和分类器融合方法
A new database of Houma Alliance Book ancient handwritten characters and classifier fusion approach
论文作者
论文摘要
霍玛联盟书是中国山西博物馆小镇博物馆的国家宝藏之一。它在研究古老的历史方面具有重要的历史意义。迄今为止,关于霍玛联盟书籍的研究一直在识别纸质文件的识别,这是无法识别且难以显示,学习和宣传的纸质文件。因此,霍玛联盟公认的古代角色的数字化可以有效提高识别古代角色并提供更可靠的技术支持和文本数据的效率。本文提出了一个新的Houma Alliance书籍的新数据库,该书古代手写字符和一种多模式融合方法来识别古老的手写字符。在数据库中,从原始书籍收藏和人类的模仿写作中收集了297个班级和3,547个Houma Alliance古代手写字符的样本。此外,采用决策级分类器融合策略用于融合三个著名的深层神经网络体系结构,以供古代手写角色识别。实验是在我们的新数据库上进行的。实验结果首先为研究界提供了新数据库的基线结果,然后证明了我们提出的方法的效率。
The Houma Alliance Book is one of the national treasures of the Museum in Shanxi Museum Town in China. It has great historical significance in researching ancient history. To date, the research on the Houma Alliance Book has been staying in the identification of paper documents, which is inefficient to identify and difficult to display, study and publicize. Therefore, the digitization of the recognized ancient characters of Houma League can effectively improve the efficiency of recognizing ancient characters and provide more reliable technical support and text data. This paper proposes a new database of Houma Alliance Book ancient handwritten characters and a multi-modal fusion method to recognize ancient handwritten characters. In the database, 297 classes and 3,547 samples of Houma Alliance ancient handwritten characters are collected from the original book collection and by human imitative writing. Furthermore, the decision-level classifier fusion strategy is applied to fuse three well-known deep neural network architectures for ancient handwritten character recognition. Experiments are performed on our new database. The experimental results first provide the baseline result of the new database to the research community and then demonstrate the efficiency of our proposed method.