论文标题
使用经过重复学习的复发性神经网络对胸部内部点的运动进行预测
Prediction of the motion of chest internal points using a recurrent neural network trained with real-time recurrent learning for latency compensation in lung cancer radiotherapy
论文作者
论文摘要
在对肺癌患者的放疗治疗期间,需要最小化肿瘤周围健康组织的辐射,这由于呼吸运动和线性加速器系统的潜伏期很困难。在拟议的研究中,我们首先使用Lucas-kanade锥体光流算法来对四个肺癌患者的胸部计算机断层扫描图像进行可变形的图像登记。然后,我们根据先前计算的变形场跟踪靠近肺部肿瘤的三个内部点,并通过使用实时重复学习(RTRL)和梯度剪辑训练的复发神经网络(RNN)预测其位置。呼吸数据很规律,在约2.5Hz的情况下采样,并在脊柱方向上包括人工漂移。轨道点运动的幅度范围为12.0mm至22.7mm。最后,我们提出了一种基于线性对应模型和Nadaraya-Watson非线性回归的最初肿瘤图像,从轨道点和初始肿瘤图像中恢复和预测3D肿瘤图像的简单方法。与测试集上RNN预测相对应的根平方误差,最大误差和抖动小于使用线性预测和最小平方正方形(LMS)获得的相同性能度量。特别是,与RNN相关的最大预测误差等于1.51mm,比与线性预测和LMS相关的最大误差低16.1%和5.0%。 RTRL的平均预测时间等于119ms,小于400ms标记位置采样时间。预测图像中的肿瘤位置在视觉上似乎是正确的,这通过等于0.955的原始图像和预测图像之间的高平均互相关证实。
During the radiotherapy treatment of patients with lung cancer, the radiation delivered to healthy tissue around the tumor needs to be minimized, which is difficult because of respiratory motion and the latency of linear accelerator systems. In the proposed study, we first use the Lucas-Kanade pyramidal optical flow algorithm to perform deformable image registration of chest computed tomography scan images of four patients with lung cancer. We then track three internal points close to the lung tumor based on the previously computed deformation field and predict their position with a recurrent neural network (RNN) trained using real-time recurrent learning (RTRL) and gradient clipping. The breathing data is quite regular, sampled at approximately 2.5Hz, and includes artificial drift in the spine direction. The amplitude of the motion of the tracked points ranged from 12.0mm to 22.7mm. Finally, we propose a simple method for recovering and predicting 3D tumor images from the tracked points and the initial tumor image based on a linear correspondence model and Nadaraya-Watson non-linear regression. The root-mean-square error, maximum error, and jitter corresponding to the RNN prediction on the test set were smaller than the same performance measures obtained with linear prediction and least mean squares (LMS). In particular, the maximum prediction error associated with the RNN, equal to 1.51mm, is respectively 16.1% and 5.0% lower than the maximum error associated with linear prediction and LMS. The average prediction time per time step with RTRL is equal to 119ms, which is less than the 400ms marker position sampling time. The tumor position in the predicted images appears visually correct, which is confirmed by the high mean cross-correlation between the original and predicted images, equal to 0.955.