论文标题

点云语义分段的近传感器边缘计算系统

A Near Sensor Edge Computing System for Point Cloud Semantic Segmentation

论文作者

Bai, Lin, Zhao, Yiming, Huang, Xinming

论文摘要

点云语义分段由于其对光线的稳健性而引起了注意。这使其成为自动驾驶的理想语义解决方案。但是,考虑到神经网络的巨大计算负担和带宽的要求,将所有计算都放入车辆电子控制单元(ECU)并不有效或实用。在本文中,我们根据范围视图提出了一个轻巧的点云语义分割网络。由于其简单的预处理和标准卷积,在像DPU这样的深度学习加速器上运行时,它是有效的。此外,为自动驾驶汽车构建了近传感器计算系统。在此系统中,放置基于FPGA的深度学习加速器核心(DPU),位于激光雷达传感器旁边,以执行点云预处理和分割神经网络。通过仅将后处理步骤留给ECU,该解决方案大大减轻了ECU的计算负担,因此缩短了决策和车辆反应潜伏期。我们的语义分割网络在Xilinx DPU上获得了10帧(FPS),其计算效率为42.5 GOP/w。

Point cloud semantic segmentation has attracted attentions due to its robustness to light condition. This makes it an ideal semantic solution for autonomous driving. However, considering the large computation burden and bandwidth demanding of neural networks, putting all the computing into vehicle Electronic Control Unit (ECU) is not efficient or practical. In this paper, we proposed a light weighted point cloud semantic segmentation network based on range view. Due to its simple pre-processing and standard convolution, it is efficient when running on deep learning accelerator like DPU. Furthermore, a near sensor computing system is built for autonomous vehicles. In this system, a FPGA-based deep learning accelerator core (DPU) is placed next to the LiDAR sensor, to perform point cloud pre-processing and segmentation neural network. By leaving only the post-processing step to ECU, this solution heavily alleviate the computation burden of ECU and consequently shortens the decision making and vehicles reaction latency. Our semantic segmentation network achieved 10 frame per second (fps) on Xilinx DPU with computation efficiency 42.5 GOP/W.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源