论文标题

用于宇宙红移分布推理的星系群的正向建模

Forward modeling of galaxy populations for cosmological redshift distribution inference

论文作者

Alsing, Justin, Peiris, Hiranya, Mortlock, Daniel, Leja, Joel, Leistedt, Boris

论文摘要

我们提出了一个向前的建模框架,用于估计光度测量的星系红移分布。我们的正向模型由:一个详细的人群模型组成,描述了星系的物理特征的内在分布,编码星系进化物理学;连接星系的物理特性与光度法的恒星种群合成模型;描述给定调查的观察和校准过程的数据模型;以及对选择切割的明确处理,无论是在主要分析样本中,还是随后分类为层析成像红移箱。这种方法的吸引力是,它不依赖光谱校准数据,对建模假设提供明确的控制,并在photo-$ z $推理和星系进化物理学之间建立直接的桥梁。除了红移分布外,正向建模还提供了一个框架,以更普遍地了解有关星系人群的统计特性的稳健推断。我们通过估计银河系和质量组装(GAMA)和VIMOS VLT DEEP(VVD)调查的红移分布来证明正向建模的实用性,并根据其光谱红移验证。我们的基线模型能够以$ΔZ\ lyssim 0.003 $和$ΔZ\ simeq 0.01 $的偏差为GAMA和VVD预测层析成像红移分布,分别是平均红移的0.01 $ - 足够舒适地准确地准确地进行了III阶段的宇宙学调查 - 没有任何超级参数调节(即进行任何拟合)。我们预计,通过其他高参数拟合和建模改进,正向建模可以为IV阶段调查的准确红移分布推断提供一条途径。

We present a forward modeling framework for estimating galaxy redshift distributions from photometric surveys. Our forward model is composed of: a detailed population model describing the intrinsic distribution of physical characteristics of galaxies, encoding galaxy evolution physics; a stellar population synthesis model connecting the physical properties of galaxies to their photometry; a data-model characterizing the observation and calibration processes for a given survey; and, explicit treatment of selection cuts, both into the main analysis sample and subsequent sorting into tomographic redshift bins. This approach has the appeal that it does not rely on spectroscopic calibration data, provides explicit control over modeling assumptions, and builds a direct bridge between photo-$z$ inference and galaxy evolution physics. In addition to redshift distributions, forward modeling provides a framework for drawing robust inferences about the statistical properties of the galaxy population more generally. We demonstrate the utility of forward modeling by estimating the redshift distributions for the Galaxy And Mass Assembly (GAMA) and Vimos VLT Deep (VVDS) surveys, validating against their spectroscopic redshifts. Our baseline model is able to predict tomographic redshift distributions for GAMA and VVDS with a bias of $Δz \lesssim 0.003$ and $Δz \simeq 0.01$ on the mean redshift respectively -- comfortably accurate enough for Stage III cosmological surveys -- without any hyper-parameter tuning (i.e., prior to doing any fitting to those data). We anticipate that with additional hyper-parameter fitting and modeling improvements, forward modeling can provide a path to accurate redshift distribution inference for Stage IV surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源