论文标题
具有极低矫正性的机械强和延性软磁铁
A mechanically strong and ductile soft magnet with extremely low coercivity
论文作者
论文摘要
软磁材料(SMM)在电气应用和可持续能源供应中使用,从而使磁通量变化响应于低能损耗的施加磁场变化。运输,家庭和制造业的电气化导致磁滞损失引起的能源消耗增加2。因此,最小化这些损失的强制性是至关重要的3。但是,仅实现此目标是不够的:电动发动机中的SMM必须承受严重的机械载荷,即合金需要高强度和延展性4。这是一个基本的设计挑战,因为大多数增强强度的方法引入了可以固定磁性域的应力场,从而增加了牢固性和滞后损失5。在这里,我们介绍了一种克服这一难题的方法。 We have designed a Fe-Co-Ni-Ta-Al multicomponent alloy with ferromagnetic matrix and paramagnetic coherent nanoparticles (~91 nm size, ~55% volume fraction).它们阻碍了脱位运动,增强了强度和延展性。它们的小尺寸,低相干性和小磁静态能在磁性结构域壁宽下方产生相互作用的体积,从而导致域壁固定最小,从而保持软磁性。该合金在54%拉伸伸长率时具有1336 MPa的拉伸强度,极低的胁迫性为78 A/m(<1 OE),中度饱和磁化值为100 AM2/kg,高电阻率高为103μmomomomeumm cm。
Soft magnetic materials (SMMs) serve in electrical applications and sustainable energy supply, allowing magnetic flux variation in response to changes in applied magnetic field, at low energy loss1. The electrification of transport, households and manufacturing leads to an increase in energy consumption due to hysteresis losses2. Therefore, minimizing coercivity, which scales these losses, is crucial3. Yet, meeting this target alone is not enough: SMMs in electrical engines must withstand severe mechanical loads, i.e., the alloys need high strength and ductility4. This is a fundamental design challenge, as most methods that enhance strength introduce stress fields that can pin magnetic domains, thus increasing coercivity and hysteretic losses5. Here, we introduce an approach to overcome this dilemma. We have designed a Fe-Co-Ni-Ta-Al multicomponent alloy with ferromagnetic matrix and paramagnetic coherent nanoparticles (~91 nm size, ~55% volume fraction). They impede dislocation motion, enhancing strength and ductility. Their small size, low coherency and small magnetostatic energy create an interaction volume below the magnetic domain wall width, leading to minimal domain wall pinning, thus maintaining the soft magnetic properties. The alloy has a tensile strength of 1336 MPa at 54% tensile elongation, extremely low coercivity of 78 A/m (<1 Oe), moderate saturation magnetization of 100 Am2/kg, and high electrical resistivity of 103 μΩ u Ohm cm.