论文标题

量化,取消和杰出状态

Quantization, dequantization, and distinguished states

论文作者

Hawkins, Eli, Minz, Christoph, Rejzner, Kasia

论文摘要

几何量化是构造从经典数据开始的量子模型的自然方法。在这项工作中,我们从具有内部产物的象征矢量空间开始,然后 - 使用几何量化技术构建量子代数,并以杰出的状态装备。我们将结果与Sorkin引起的施工进行了比较 - Sorkin从相同的输入数据开始,并表明我们的杰出状态与Sorkin-Johnson州一致。 Sorkin的构造最初是在因果集(本地有限的,部分有序的集合)上应用于自由标量场的。我们的观点暗示了对较少线性示例(例如相互作用领域)的自然概括。

Geometric quantization is a natural way to construct quantum models starting from classical data. In this work, we start from a symplectic vector space with an inner product and -- using techniques of geometric quantization -- construct the quantum algebra and equip it with a distinguished state. We compare our result with the construction due to Sorkin -- which starts from the same input data -- and show that our distinguished state coincides with the Sorkin-Johnson state. Sorkin's construction was originally applied to the free scalar field over a causal set (locally finite, partially ordered set). Our perspective suggests a natural generalization to less linear examples, such as an interacting field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源