论文标题

具有地位误差依赖性的平面图的近似距离甲壳

Approximate Distance Oracles for Planar Graphs with Subpolynomial Error Dependency

论文作者

Le, Hung

论文摘要

Thorup [focs'01,jacm'04]和克莱因[Soda'01]独立地表明,存在$(1+ε)$ - 带有$ O(n(\ log log n)ε^{ - 1})平面图的$(1+ε)左右距离甲骨文,$(\ log n)ε^{ - 1})$(ε^{ - 1})$ QUERY TIME。虽然对$ n $的依赖性几乎是线性的,但它们的甲壳的空间质量产物二次地依赖于$ 1/ε$。许多后续结果要么改善了空间\ emph {或}在具有相同(有时最糟糕的$ 1/ε$)时,要么的查询时间。 Kawarabayashi,Sommer和Thorup [Soda'13]是第一个提高对$ 1/ε$从二次依赖的依赖性的人(费用为$ \ log^*(n)$ factor)。可以猜想的是,对$ 1/ε$的线性依赖性是最佳的:对于平面图中许多已知的距离有关的问题,证明对$ 1/ε$的依赖至少是线性的。 在这项工作中,我们通过将$ 1/ε$的依赖性从线性到\ emph {subpolynomial} $(1/ε)^{o(1)} $降低了$ 1/ε$的依赖性来反驳这一猜想。更准确地说,我们用$ O(n \ log(n)(ε^{ - o(1)} + \ log^*n))$ o Space和$ \ log^{2 + o(1)}(1/ε)$查询时间。我们的建设是在过去二十年中发展的几种不同思想的结晶。

Thorup [FOCS'01, JACM'04] and Klein [SODA'01] independently showed that there exists a $(1+ε)$-approximate distance oracle for planar graphs with $O(n (\log n)ε^{-1})$ space and $O(ε^{-1})$ query time. While the dependency on $n$ is nearly linear, the space-query product of their oracles depend quadratically on $1/ε$. Many follow-up results either improved the space \emph{or} the query time of the oracles while having the same, sometimes worst, dependency on $1/ε$. Kawarabayashi, Sommer, and Thorup [SODA'13] were the first to improve the dependency on $1/ε$ from quadratic to nearly linear (at the cost of $\log^*(n)$ factors). It is plausible to conjecture that the linear dependency on $1/ε$ is optimal: for many known distance-related problems in planar graphs, it was proved that the dependency on $1/ε$ is at least linear. In this work, we disprove this conjecture by reducing the dependency of the space-query product on $1/ε$ from linear all the way down to \emph{subpolynomial} $(1/ε)^{o(1)}$. More precisely, we construct an oracle with $O(n\log(n)(ε^{-o(1)} + \log^*n))$ space and $\log^{2+o(1)}(1/ε)$ query time. Our construction is the culmination of several different ideas developed over the past two decades.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源