论文标题
调查独立规则健身在学习分类器系统中的影响
Investigating the Impact of Independent Rule Fitnesses in a Learning Classifier System
论文作者
论文摘要
达到至少一定程度的解释性需要对许多机器学习系统(例如共同的黑盒模型)进行复杂的分析。最近,我们提出了一个新的基于规则的学习系统SuprB,通过利用单独的优化器来构建紧凑,可解释和透明的模型,用于模型选择任务,涉及规则发现和规则集合的组成。这允许用户专门量身定制其模型结构以满足特定的可解释性要求。从优化的角度来看,这使我们能够定义更清晰的目标,并且我们发现与许多最先进的系统相比,这使我们能够独立地将规则健身保持独立。在本文中,我们在一系列回归问题上彻底研究了该系统的性能,并将其与基于规则的著名学习系统进行比较。我们发现SuprB评估的总体结果与XCSF相当,同时允许更轻松地控制模型结构,并显示出对随机种子和数据分割的敏感性大大较小。这种增加的控制可以有助于随后为模型的训练和最终结构提供解释。
Achieving at least some level of explainability requires complex analyses for many machine learning systems, such as common black-box models. We recently proposed a new rule-based learning system, SupRB, to construct compact, interpretable and transparent models by utilizing separate optimizers for the model selection tasks concerning rule discovery and rule set composition.This allows users to specifically tailor their model structure to fulfil use-case specific explainability requirements. From an optimization perspective, this allows us to define clearer goals and we find that -- in contrast to many state of the art systems -- this allows us to keep rule fitnesses independent. In this paper we investigate this system's performance thoroughly on a set of regression problems and compare it against XCSF, a prominent rule-based learning system. We find the overall results of SupRB's evaluation comparable to XCSF's while allowing easier control of model structure and showing a substantially smaller sensitivity to random seeds and data splits. This increased control can aid in subsequently providing explanations for both training and final structure of the model.