论文标题

分配FCP扩展

Distributive FCP extensions

论文作者

Picavet, Gabriel, Picavet-L'Hermitte, Martine

论文摘要

我们正在处理$ r \ subseteq s $的扩展,其poset $ [r,s]的链条是有限的({\ em i.e.} $ r \ subseteq s $具有fcp属性),并且$ [r,s] $是分配latte latte latte latte latte latte lattens expressions extens fcp fcp fcp fcp。请注意,分配FCP扩展的晶格$ [R,S] $是有限的。本文是我们较早的论文的延续,我们研究了Catenarian和Boolean扩展。实际上,对于FCP扩展而言,以下含义存在:布尔$ \ rightarrow $分配$ \ rightarrow $ catenarian。实际上,分布FCP扩展的全面表征实际上仍然是一个挑战,本质上是因为未完全解决了场扩展的相同问题。然而,我们能够为某些类别的扩展表现出很多积极的结果。一个主要结果是,当且仅当$ r \ r \ subseteq \ overline r $是分布式时,FCP扩展名$ r \ subseteq s $是分布式的,其中$ \ overline r $是$ r $ in $ s $的整体关闭。特别注意分布场扩展。

We are dealing with extensions of commutative rings $R\subseteq S$ whose chains of the poset $[R,S]$ of their subextensions are finite ({\em i.e.} $R\subseteq S$ has the FCP property) and such that $[R,S]$ is a distributive lattice, that we call distributive FCP extensions. Note that the lattice $[R,S]$ of a distributive FCP extension is finite. This paper is the continuation of our earlier papers where we studied catenarian and Boolean extensions. Actually, for an FCP extension, the following implications hold: Boolean $\Rightarrow$ distributive $\Rightarrow$ catenarian. A comprehensive characterization of distributive FCP extensions actually remains a challenge, essentially because the same problem for field extensions is not completely solved. Nevertheless, we are able to exhibit a lot of positive results for some classes of extensions. A main result is that an FCP extension $R\subseteq S$ is distributive if and only if $R\subseteq\overline R$ is distributive, where $\overline R$ is the integral closure of $R$ in $S$. A special attention is paid to distributive field extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源