论文标题
$ M $ - 学术和$ U $ - 学位的概括在可测量功能的环上
A Generalization of $ m $-topology and $ U $-topology on rings of measurable functions
论文作者
论文摘要
对于可测量的空间($ x,\ mathcal {a} $),让$ \ nathcal {m}(x,x,\ nathcal {a})$为所有实际有价值的可测量功能的相应环,让$μ$为($ x,x,\ nathcal {a} $)。在本文中,我们通过RIND $ \ MATHCAL {m}(x,x,\ nathcal {a})$中的理想$ i $概括了$ \ mathcal {m}(x,x,x,x,x,x,x,x,x,x,\ mathcal {a})$上的所谓$m_μ$和$u_μ$拓扑。整个论文中,广义版将被称为$ M_ {μ_{i}} $和$ u_ {μ_{i}} $拓扑。 $ l_ {i}^{\ infty} \ left(μ\右)$代表$ \ Mathcal {M}(M}(x,x,x,\ Mathcal {a})$组成的所有函数,这些功能本质上是$ i $ $ $ $ $ a的(在尺度上($ x,$ x,$ x,\ nathcal calcal {a} a} $)。另外,令$i_μ(x,x,\ mathcal {a})= \ big \ {f \ in \ mathcal {m}(x,x,x,x,\ mathcal {a}):\,\,\,\ text {for every} \,g \,g \,g \,g \ in \ mathcal in \ mathcal {m}(m}(x,x,x,x,x,x,x,x,x,x,is as}本质上是} \,i $ - $ \ text {bounded} \ big \} $。然后,$i_μ(x,\ mathcal {a})$是$ \ Mathcal {m}(x,x,x,\ mathcal {a})$ cont $ i $的理想选择,并包含在$ l_ {i}^{i}^{\ infty}^{\ infty} \ weft(μ\ \ right)$中。还表明$i_μ(x,x,\ mathcal {a})$和$ l_ {i}^{\ infty} \ left(μ\右)$是$ 0 $的$ 0 $的组件,$ m_ {μ_{μ_{μ_{i}}} $和$ u_ {μ_{μ_{μ_{μ_{i}} $分析。此外,我们在这两个拓扑重合时获得了必要和足够的条件。
For a measurable space ($X,\mathcal{A}$), let $\mathcal{M}(X,\mathcal{A})$ be the corresponding ring of all real valued measurable functions and let $μ$ be a measure on ($X,\mathcal{A}$). In this paper, we generalize the so-called $m_μ$ and $U_μ$ topologies on $\mathcal{M}(X,\mathcal{A})$ via an ideal $I$ in the ring $\mathcal{M}(X,\mathcal{A})$. The generalized versions will be referred to as the $m_{μ_{I}}$ and $U_{μ_{I}}$ topology, respectively, throughout the paper. $L_{I}^{\infty} \left(μ\right)$ stands for the subring of $\mathcal{M}(X,\mathcal{A})$ consisting of all functions that are essentially $I$-bounded (over the measure space ($X,\mathcal{A}, μ$)). Also let $I_μ (X,\mathcal{A}) = \big \{ f \in \mathcal{M}(X,\mathcal{A}) : \, \text{for every} \, g \in \mathcal{M}(X,\mathcal{A}), fg \, \, \text{is essentially} \, I$-$\text{bounded} \big \}$. Then $I_μ (X,\mathcal{A})$ is an ideal in $\mathcal{M}(X,\mathcal{A})$ containing $I$ and contained in $L_{I}^{\infty} \left(μ\right)$. It is also shown that $I_μ (X,\mathcal{A})$ and $L_{I}^{\infty} \left(μ\right)$ are the components of $0$ in the spaces $m_{μ_{I}}$ and $U_{μ_{I}}$, respectively. Additionally, we obtain a chain of necessary and sufficient conditions as to when these two topologies coincide.