论文标题
一种生成的深度学习方法,用于形成从无相相声散射数据中识别任意物体的形状识别的方法
A Generative deep learning approach for shape recognition of arbitrary objects from phaseless acoustic scattering data
论文作者
论文摘要
我们提出并展示了一种从其声学散射特性中对任意对象的形状识别的生成深度学习方法。该策略利用了深层神经网络,以了解二维声学物体的潜在空间与远场散射幅度之间的映射。神经网络被设计为对抗性自动编码器,并通过无监督的学习训练,以确定声学对象的潜在空间。对象的重要结构特征嵌入了较低维的潜在空间中,该空间支持形状生成器的建模并加速逆设计过程中的学习。拟议的逆设计使用与编码器和解码器样构建结构的变异推理方法,其中解码器由两个预处理的神经网络组成。数据驱动的框架找到了对不足的反向散射问题的准确解决方案,在这种偏置问题中,多频无段的远场模式克服了非唯一的解决方案空间。这种逆方法是一种功能强大的设计工具,不需要复杂的分析计算,并为实现的实现开辟了新的途径,自动识别任意形状的潜艇或大型鱼类以及其他水下应用。
We propose and demonstrate a generative deep learning approach for the shape recognition of an arbitrary object from its acoustic scattering properties. The strategy exploits deep neural networks to learn the mapping between the latent space of a two-dimensional acoustic object and the far-field scattering amplitudes. A neural network is designed as an Adversarial autoencoder and trained via unsupervised learning to determine the latent space of the acoustic object. Important structural features of the object are embedded in lower-dimensional latent space which supports the modeling of a shape generator and accelerates the learning in the inverse design process.The proposed inverse design uses the variational inference approach with encoder and decoder-like architecture where the decoder is composed of two pretrained neural networks, the generator and the forward model. The data-driven framework finds an accurate solution to the ill-posed inverse scattering problem, where non-unique solution space is overcome by the multifrequency phaseless far-field patterns. This inverse method is a powerful design tool that does not require complex analytical calculation and opens up new avenues for practical realization, automatic recognition of arbitrary shaped submarines or large fish, and other underwater applications.