论文标题

将映射映射到符号组的全体形态分解

Holomorphic Factorization of Mappings into the Symplectic Group

论文作者

Schott, Josua

论文摘要

结果表明,任何符号$ 2N \ times 2n $ -matrix,其条目在减少的Stein空间上具有复杂的全态函数,可以将其分解为基本符号矩阵的有限产物,并且只有当它为null-homotopic时。此外,如果是这种情况,则仅取决于$ n $和空间的尺寸,可以将因素数量界定。

It is shown that any symplectic $2n\times 2n$-matrix, whose entries are complex holomorphic functions on a reduced Stein space, can be decomposed into a finite product of elementary symplectic matrices if and only if it is null-homotopic. Moreover, if this is the case, the number of factors can be bounded by a constant depending only on $n$ and the dimension of the space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源