论文标题
将映射映射到符号组的全体形态分解
Holomorphic Factorization of Mappings into the Symplectic Group
论文作者
论文摘要
结果表明,任何符号$ 2N \ times 2n $ -matrix,其条目在减少的Stein空间上具有复杂的全态函数,可以将其分解为基本符号矩阵的有限产物,并且只有当它为null-homotopic时。此外,如果是这种情况,则仅取决于$ n $和空间的尺寸,可以将因素数量界定。
It is shown that any symplectic $2n\times 2n$-matrix, whose entries are complex holomorphic functions on a reduced Stein space, can be decomposed into a finite product of elementary symplectic matrices if and only if it is null-homotopic. Moreover, if this is the case, the number of factors can be bounded by a constant depending only on $n$ and the dimension of the space.