论文标题

频域模型的对抗攻击

Frequency Domain Model Augmentation for Adversarial Attack

论文作者

Long, Yuyang, Zhang, Qilong, Zeng, Boheng, Gao, Lianli, Liu, Xianglong, Zhang, Jian, Song, Jingkuan

论文摘要

对于黑盒攻击,替代模型和受害者模型之间的差距通常很大,这表现为弱攻击性能。通过观察到可以通过同时攻击不同模型来提高对抗性示例的可传递性的动机,模型增强方法通过使用转换图像来模拟不同的模型。但是,空间域的现有转换不会转化为显着多样化的增强模型。为了解决这个问题,我们提出了一种新型的频谱模拟攻击,以针对通常训练有素和防御模型来制作更容易转移的对抗性例子。具体而言,我们将频谱转换应用于输入,从而在频域中执行模型增强。从理论上讲,我们证明了从频域中得出的转换导致不同的频谱显着图,这是我们提出的指标,以反映替代模型的多样性。值得注意的是,我们的方法通常可以与现有攻击结合在一起。 Imagenet数据集的广泛实验证明了我们方法的有效性,\ textit {e.g。},攻击了九个最先进的防御模型,其平均成功率为\ textbf {95.4 \%}。我们的代码可在\ url {https://github.com/yuyang-long/ssa}中获得。

For black-box attacks, the gap between the substitute model and the victim model is usually large, which manifests as a weak attack performance. Motivated by the observation that the transferability of adversarial examples can be improved by attacking diverse models simultaneously, model augmentation methods which simulate different models by using transformed images are proposed. However, existing transformations for spatial domain do not translate to significantly diverse augmented models. To tackle this issue, we propose a novel spectrum simulation attack to craft more transferable adversarial examples against both normally trained and defense models. Specifically, we apply a spectrum transformation to the input and thus perform the model augmentation in the frequency domain. We theoretically prove that the transformation derived from frequency domain leads to a diverse spectrum saliency map, an indicator we proposed to reflect the diversity of substitute models. Notably, our method can be generally combined with existing attacks. Extensive experiments on the ImageNet dataset demonstrate the effectiveness of our method, \textit{e.g.}, attacking nine state-of-the-art defense models with an average success rate of \textbf{95.4\%}. Our code is available in \url{https://github.com/yuyang-long/SSA}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源