论文标题

从树木交配中的比例不变的随机几何形状:数值研究

Scale-invariant random geometry from mating of trees: a numerical study

论文作者

Budd, Timothy, Castro, Alicia

论文摘要

搜索量表不变的随机几何形状对于量子重力中欧几里得路径积分的渐近安全假设至关重要。为了揭示超出表面拓扑的规模不变的随机几何形状的新普遍性类别,我们探讨了Duplantier,Miller和Sheffield引入的树木交配的概括。后者根据二维相关的布朗尼运动,在2个球员装饰的2个球体上提供了liouville量子重力的编码,可以看作是描述一对随机树。可以通过使用Gwynne,Miller和Sheffield的Mated-Crt地图离散树木的交配来方便地研究和模拟Liouville量子重力的随机几何形状。考虑到较高的相关布朗尼运动,自然会导致一系列非平面随机图,从而推广了可能属于尺度不变的随机几何形状的新通用类别类别类别的crt图。我们开发了一种数值方法,可以有效地模拟这些随机图并通过距离测量探索它们可能的缩放限制,从而尤其使我们可以在二维和三维设置中估算Hausdorff尺寸。在二维情况下,这些估计值准确地再现了先前的已知分析和数值结果,而在三维情况下,它们为潜在的三参数家族提供了新的规模不变的随机几何形状的第一个窗口。

The search for scale-invariant random geometries is central to the Asymptotic Safety hypothesis for the Euclidean path integral in quantum gravity. In an attempt to uncover new universality classes of scale-invariant random geometries that go beyond surface topology, we explore a generalization of the mating of trees approach introduced by Duplantier, Miller and Sheffield. The latter provides an encoding of Liouville Quantum Gravity on the 2-sphere decorated by a certain random space-filling curve in terms of a two-dimensional correlated Brownian motion, that can be viewed as describing a pair of random trees. The random geometry of Liouville Quantum Gravity can be conveniently studied and simulated numerically by discretizing the mating of trees using the Mated-CRT maps of Gwynne, Miller and Sheffield. Considering higher-dimensional correlated Brownian motions, one is naturally led to a sequence of non-planar random graphs generalizing the Mated-CRT maps that may belong to new universality classes of scale-invariant random geometries. We develop a numerical method to efficiently simulate these random graphs and explore their possible scaling limits through distance measurements, allowing us in particular to estimate Hausdorff dimensions in the two- and three-dimensional setting. In the two-dimensional case these estimates accurately reproduce previous known analytic and numerical results, while in the three-dimensional case they provide a first window on a potential three-parameter family of new scale-invariant random geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源