论文标题
全球人的精细活动
Fine-grained Activities of People Worldwide
论文作者
论文摘要
每天,人类都会进行许多紧密相关的活动,这些活动涉及微妙的歧视动作,例如穿衬衫与穿夹克,或握手与给高五个。道德视觉AI的活动识别可以为我们的日常生活模式提供见解,但是现有的活动识别数据集并不能捕捉到世界各地这些人类活动的巨大多样性。为了解决此限制,我们介绍了一个免费的移动应用程序Collector,以录制视频,同时注释同意主题的对象和活动。这个新的数据收集平台用于策划人民(CAP)数据集的同意活动,这是全球人的第一个大规模,细粒度的活动数据集。 CAP数据集包含145万个日常生活中512个细粒子活动标签的视频片段,由33个国家 /地区的780名受试者收集。我们为该数据集提供活动分类和活动检测基准,并分析基线结果,以深入了解世界周围的人如何进行共同的活动。可以在visym.github.io/cap上使用数据集,基准,评估工具,公共排行榜和移动应用程序。
Every day, humans perform many closely related activities that involve subtle discriminative motions, such as putting on a shirt vs. putting on a jacket, or shaking hands vs. giving a high five. Activity recognition by ethical visual AI could provide insights into our patterns of daily life, however existing activity recognition datasets do not capture the massive diversity of these human activities around the world. To address this limitation, we introduce Collector, a free mobile app to record video while simultaneously annotating objects and activities of consented subjects. This new data collection platform was used to curate the Consented Activities of People (CAP) dataset, the first large-scale, fine-grained activity dataset of people worldwide. The CAP dataset contains 1.45M video clips of 512 fine grained activity labels of daily life, collected by 780 subjects in 33 countries. We provide activity classification and activity detection benchmarks for this dataset, and analyze baseline results to gain insight into how people around with world perform common activities. The dataset, benchmarks, evaluation tools, public leaderboards and mobile apps are available for use at visym.github.io/cap.