论文标题

几何纠缠的纠缠复杂性概括性

An Entanglement-Complexity Generalization of the Geometric Entanglement

论文作者

Nico-Katz, Alex, Bose, Sougato

论文摘要

我们通过利用基质产品状态形式主义提出了纯状态几何纠缠的一系列概括。这种概括完全脱离了可分离性概念,可以自由调整,这是键对目标状态的键函数的函数,而目标状态在纠缠复杂性方面有所不同。我们首先在玩具旋转1模型中证明了其价值,在这种模型中,与常规的几何纠缠不同,它成功识别了AKLT基态。然后,我们研究了具有单轴和菱形各向异性的Haldane链的相图,揭示了广义的几何纠缠可以成功地检测其所有阶段及其纠缠的复杂性。最后,我们研究了无序的旋转$ 1/2 $ HEISENBERG模型,在这里我们发现广义几何纠缠中的差异可以用作麦加氏定位的纠缠过渡的有利可图的特征。

We propose a class of generalizations of the geometric entanglement for pure states by exploiting the matrix product state formalism. This generalization is completely divested from the notion of separability and can be freely tuned as a function of the bond dimension to target states which vary in entanglement complexity. We first demonstrate its value in a toy spin-1 model where, unlike the conventional geometric entanglement, it successfully identifies the AKLT ground state. We then investigate the phase diagram of a Haldane chain with uniaxial and rhombic anisotropies, revealing that the generalized geometric entanglement can successfully detect all its phases and their entanglement complexity. Finally we investigate the disordered spin-$1/2$ Heisenberg model, where we find that differences in generalized geometric entanglements can be used as lucrative signatures of the ergodic-localized entanglement transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源