论文标题

部分可观测时空混沌系统的无模型预测

On the Intrinsic Structures of Spiking Neural Networks

论文作者

Zhang, Shao-Qun, Chen, Jia-Yi, Wu, Jin-Hui, Zhang, Gao, Xiong, Huan, Gu, Bin, Zhou, Zhi-Hua

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data. The performance of SNNs hinges not only on selecting an apposite architecture and fine-tuning connection weights, similar to conventional ANNs, but also on the meticulous configuration of intrinsic structures within spiking computations. However, there has been a dearth of comprehensive studies examining the impact of intrinsic structures. Consequently, developers often find it challenging to apply a standardized configuration of SNNs across diverse datasets or tasks. This work delves deep into the intrinsic structures of SNNs. Initially, we unveil two pivotal components of intrinsic structures: the integration operation and firing-reset mechanism, by elucidating their influence on the expressivity of SNNs. Furthermore, we draw two key conclusions: the membrane time hyper-parameter is intimately linked to the eigenvalues of the integration operation, dictating the functional topology of spiking dynamics, and various hyper-parameters of the firing-reset mechanism govern the overall firing capacity of an SNN, mitigating the injection ratio or sampling density of input data. These findings elucidate why the efficacy of SNNs hinges heavily on the configuration of intrinsic structures and lead to a recommendation that enhancing the adaptability of these structures contributes to improving the overall performance and applicability of SNNs. Inspired by this recognition, we propose two feasible approaches to enhance SNN learning. These involve leveraging self-connection architectures and employing stochastic spiking neurons to augment the adaptability of the integration operation and firing-reset mechanism, respectively. We verify the effectiveness of the proposed methods from perspectives of theory and practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源