论文标题
部分可观测时空混沌系统的无模型预测
Statistical Detection of Adversarial examples in Blockchain-based Federated Forest In-vehicle Network Intrusion Detection Systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The internet-of-Vehicle (IoV) can facilitate seamless connectivity between connected vehicles (CV), autonomous vehicles (AV), and other IoV entities. Intrusion Detection Systems (IDSs) for IoV networks can rely on machine learning (ML) to protect the in-vehicle network from cyber-attacks. Blockchain-based Federated Forests (BFFs) could be used to train ML models based on data from IoV entities while protecting the confidentiality of the data and reducing the risks of tampering with the data. However, ML models created this way are still vulnerable to evasion, poisoning, and exploratory attacks using adversarial examples. This paper investigates the impact of various possible adversarial examples on the BFF-IDS. We proposed integrating a statistical detector to detect and extract unknown adversarial samples. By including the unknown detected samples into the dataset of the detector, we augment the BFF-IDS with an additional model to detect original known attacks and the new adversarial inputs. The statistical adversarial detector confidently detected adversarial examples at the sample size of 50 and 100 input samples. Furthermore, the augmented BFF-IDS (BFF-IDS(AUG)) successfully mitigates the adversarial examples with more than 96% accuracy. With this approach, the model will continue to be augmented in a sandbox whenever an adversarial sample is detected and subsequently adopt the BFF-IDS(AUG) as the active security model. Consequently, the proposed integration of the statistical adversarial detector and the subsequent augmentation of the BFF-IDS with detected adversarial samples provides a sustainable security framework against adversarial examples and other unknown attacks.