论文标题

部分可观测时空混沌系统的无模型预测

Lattice Boltzmann modeling of cholesteric liquid crystal droplets under an oscillatory electric field

论文作者

Fadda, F., Lamura, A., Tiribocchi, A.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We numerically study the dynamics of quasi-two dimensional cholesteric liquid crystal droplets in the presence of a time-dependent electric field, rotating at constant angular velocity. A surfactant sitting at droplet interface is also introduced to prevent droplet coalescence. The dynamics is modeled following a hybrid numerical approach, where a standard lattice Boltzmann technique solves the Navier-Stokes equation and a finite difference scheme integrates the evolution equations of liquid crystal and surfactant. Our results show that, once the field is turned on, the liquid crystal rotates coherently triggering a concurrent orbital motion of both droplets around each other, an effect due to the momentum transfer to the surrounding fluid. In addition the topological defects, resulting from the conflict orientation of the liquid crystal within the drops, exhibit a chaotic-like motion in cholesterics with a high pitch, in contrast with a regular one occurring along circular trajectories observed in nematics drops. Such behavior is found to depend on magnitude and frequency of the applied field as well as on the anchoring of the liquid crystal at the droplet interface. These findings are quantitatively evaluated by measuring the angular velocity of fluid and drops for various frequencies of the applied field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源