论文标题

部分可观测时空混沌系统的无模型预测

PUF-Phenotype: A Robust and Noise-Resilient Approach to Aid Intra-Group-based Authentication with DRAM-PUFs Using Machine Learning

论文作者

Millwood, Owen, Miskelly, Jack, Yang, Bohao, Gope, Prosanta, Kavun, Elif, Lin, Chenghua

论文摘要

随着现代世界中对高度安全和可靠的轻质系统的需求增加,物理上不可吻合的功能(PUF)继续向高成本加密技术和安全的钥匙存储提供轻巧的替代品。尽管PUF承诺的安全功能对安全系统设计师具有很高的吸引力,但已证明它们容易受到各种复杂攻击的攻击 - 最著名的是基于机器学习(ML)建模攻击(ML -MA),这些攻击(ML -MA)试图以数字方式克隆PUF行为,从而破坏了他们的安全性。最新的ML-MA甚至还利用了PUF误差校正所需的公开已知的助手数据,以预测PUF响应而无需了解响应数据。为此,与传统的PUF储存技术和比较前知名挑战 - 响应对(CRPS)相比,在ML的协助下,研究开始研究PUF设备的身份验证。在本文中,我们基于新颖的“ PUF - 表型”概念提出了一个使用ML的分类系统,以准确识别起点并确定得出的噪声记忆(DRAM)PUF响应的有效性作为助手数据依赖数据的Denoisis技术的替代方法。据我们所知,我们是第一个每个模型对多个设备进行分类的人,以实现基于组的PUF身份验证方案。我们使用经过改进的深卷积神经网络(CNN)与几个完善的分类器结合使用,最多达到98 \%的分类精度。我们还通过实验验证了在Raspberry Pi设备上模型的性能,以确定在资源约束环境中部署我们所提出的模型的适用性。

As the demand for highly secure and dependable lightweight systems increases in the modern world, Physically Unclonable Functions (PUFs) continue to promise a lightweight alternative to high-cost encryption techniques and secure key storage. While the security features promised by PUFs are highly attractive for secure system designers, they have been shown to be vulnerable to various sophisticated attacks - most notably Machine Learning (ML) based modelling attacks (ML-MA) which attempt to digitally clone the PUF behaviour and thus undermine their security. More recent ML-MA have even exploited publicly known helper data required for PUF error correction in order to predict PUF responses without requiring knowledge of response data. In response to this, research is beginning to emerge regarding the authentication of PUF devices with the assistance of ML as opposed to traditional PUF techniques of storage and comparison of pre-known Challenge-Response pairs (CRPs). In this article, we propose a classification system using ML based on a novel `PUF-Phenotype' concept to accurately identify the origin and determine the validity of noisy memory derived (DRAM) PUF responses as an alternative to helper data-reliant denoising techniques. To our best knowledge, we are the first to perform classification over multiple devices per model to enable a group-based PUF authentication scheme. We achieve up to 98\% classification accuracy using a modified deep convolutional neural network (CNN) for feature extraction in conjunction with several well-established classifiers. We also experimentally verified the performance of our model on a Raspberry Pi device to determine the suitability of deploying our proposed model in a resource-constrained environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源