论文标题

有限组的增强功率图的补充

The complement of enhanced power graph of a finite group

论文作者

Parveen, Kumar, Jitender

论文摘要

有限的组$ g $的增强功率图$ \ MATHCAL {p} _e(g)$是简单的无向图,其顶点集为$ g $,而两个不同的顶点$ x,y $相邻,如果$ x,y \ in \ langle z \ rangle z \ rangle $ in g $ in g $ in g $。在本文中,我们给出了卡梅伦[6]提出的问题的肯定答案,该问题指出:不可行的功率图$ \ bar $ \ bar {\ mathcal {p} _e(g)} $的补充是非循环$ g $的$ g $与隔离端口相互连接的组件只有一个连接的组件吗?我们对所有有限组$ g $进行分类,以使图$ \ bar {\ Mathcal {p} _e(g)} $是双分部分。我们表明图形$ \ bar {\ mathcal {p} _e(g)} $是弱完美的。此外,我们研究了$ \ bar {\ bar {\ mathcal {p} _e(g)} $的子图$ \ bar {\ Mathcal {p} _e(g^*)} $。我们对所有有限组$ g $进行了分类,以使该图为$ \ bar {\ mathcal {p} _e(g^*)} $是单轮和五囊。我们证明了有限组$ g $的不存在,因此图形$ \ bar {\ mathcal {p} _e(g^*)} $是bicyclic,tricyclic或tetracyclic。最后,我们表征所有有限的$ g $,以便分别是外部平台,平面,投射 - 平面和圆环。

The enhanced power graph $\mathcal{P}_E(G)$ of a finite group $G$ is the simple undirected graph whose vertex set is $G$ and two distinct vertices $x, y$ are adjacent if $x, y \in \langle z \rangle$ for some $z \in G$. In this article, we give an affirmative answer of the question posed by Cameron [6] which states that: Is it true that the complement of the enhanced power graph $\bar{\mathcal{P}_E(G)}$ of a non-cyclic group $G$ has only one connected component apart from isolated vertices? We classify all finite groups $G$ such that the graph $\bar{\mathcal{P}_E(G)}$ is bipartite. We show that the graph $\bar{\mathcal{P}_E(G)}$ is weakly perfect. Further, we study the subgraph $\bar{\mathcal{P}_E(G^*)}$ of $\bar{\mathcal{P}_E(G)}$ induced by all the non-isolated vertices of $\bar{\mathcal{P}_E(G)}$. We classify all finite groups $G$ such that the graph is $\bar{\mathcal{P}_E(G^*)}$ is unicyclic and pentacyclic. We prove the non-existence of finite groups $G$ such that the graph $\bar{\mathcal{P}_E(G^*)}$ is bicyclic, tricyclic or tetracyclic. Finally, we characterize all finite groups $G$ such that the graph $\bar{\mathcal{P}_E(G^*)}$ is outerplanar, planar, projective-planar and toroidal, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源