论文标题

Angehrn-Siu-Helmke的方法适用于Abelian品种

Angehrn-Siu-Helmke's method applied to abelian varieties

论文作者

Jiang, Zhi

论文摘要

我们应用Angehrn-Siu-Helmke的方法来估计较高尺寸极化的Abelian品种的底线FREENESS阈值。我们表明,在模量空间中,CAUCCI的猜想持有非常通用的极化Abelian品种$ \ MATHCAL A_ {G,L} $,只有有限的许多可能的极化类型$ L $在每个尺寸$ G $中。我们改善了任何两极分化的$ 4 $ folds和简单的Abelian $ 5 $ folds的Basepoint FreeNESS阈值的界限。

We apply Angehrn-Siu-Helmke's method to estimate basepoint freeness thresholds of higher dimensional polarized abelian varieties. We showed that a conjecture of Caucci holds for very general polarized abelian varieties in the moduli spaces $\mathcal A_{g, l}$ with only finitely many possible exceptions of polarization types $l$ in each dimension $g$. We improved the bound of basepoint freeness thresholds of any polarized ableian $4$-folds and simple abelian $5$-folds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源