论文标题
PICARD-RANK-1 FANO品种上切线捆绑包的规范扩展的稳定性
Stability of the canonical extension of tangent bundles on Picard-rank-1 Fano varieties
论文作者
论文摘要
我们考虑通过琐碎的线束对切线束的规范扩展的斜率稳定性,以及Picard-Rank-1 Fano品种上的扩展类C_1(T_X)。如果索引划分尺寸或维度加一个尺寸,我们表明切线束的稳定性意味着(半)稳定性的稳定性。我们结果的结果之一是,稳定矢量束的模量空间上的规范扩展在曲线上具有固定的决定因素至少可以半固定,并且在某些情况下是稳定的。
We consider slope stability of the canonical extension of the tangent bundle by the trivial line bundle and with the extension class c_1(T_X) on Picard-rank-1 Fano varieties. In cases where the index divides the dimension or the dimension plus one, we show that stability of the tangent bundle implies (semi)stability of the canonical extension. One consequence of our result is that the canonical extensions on moduli spaces of stable vector bundles with a fixed determinant on a curve are at least semistable, and stable in some cases.