论文标题

基于模型驱动的基于水下声学的深度均衡器DM通信

Model-Driven Based Deep Unfolding Equalizer for Underwater Acoustic OFDM Communications

论文作者

Zhao, Hao, Yang, Cui, Xu, Yalu, Ji, Fei, Wen, Miaowen, Chen, Yankun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

It is challenging to design an equalizer for the complex time-frequency doubly-selective channel. In this paper, we employ the deep unfolding approach to establish an equalizer for the underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) system, namely UDNet. Each layer of UDNet is designed according to the classical minimum mean square error (MMSE) equalizer. Moreover, we consider the QPSK equalization as a four-classification task and adopt minimum Kullback-Leibler (KL) to achieve a smaller symbol error rate (SER) with the one-hot coding instead of the MMSE criterion. In addition, we introduce a sliding structure based on the banded approximation of the channel matrix to reduce the network size and aid UDNet to perform well for different-length signals without changing the network structure. Furthermore, we apply the measured at-sea doubly-selective UWA channel and offshore background noise to evaluate the proposed equalizer. Experimental results show that the proposed UDNet performs better with low computational complexity. Concretely, the SER of UDNet is nearly an order of magnitude lower than that of MMSE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源