论文标题

部分可观测时空混沌系统的无模型预测

Efficient RDF Streaming for the Edge-Cloud Continuum

论文作者

Sowinski, Piotr, Wasielewska-Michniewska, Katarzyna, Ganzha, Maria, Pawlowski, Wieslaw, Szmeja, Pawel, Paprzycki, Marcin

论文摘要

随着大型分布式系统向边缘云连续性的持续,逐渐转移,需要在良好的技术中进行通用,可扩展,实用且基于扎根的软件解决方案。同时,语义技术,尤其是在流媒体上下文中,对于在边缘云系统中启用互操作性变得越来越重要。但是,近年来,语义数据流的领域一直停滞不前,并且没有适合这些要求的可用解决方案。为了填补这一空白,在这一贡献中,提出了一种新颖的端到端RDF流媒体方法(命名为Jelly)。该方法易于实现,但非常弹性,并且旨在适合各种用例。在一系列实验中评估了其实际性能,包括端到端吞吐量和潜伏期测量。结果表明,Jelly的性能比当前可用的方法要出色。提出的方法在包括未来的Edge-Cloud Systems在内的各种应用程序中实现高性能语义数据处理方面取得了重大进展。此外,这项研究开辟了在现实生活中应用和评估该方法的可能性,这将是进一步研究的重点。

With the ongoing, gradual shift of large-scale distributed systems towards the edge-cloud continuum, the need arises for software solutions that are universal, scalable, practical, and grounded in well-established technologies. Simultaneously, semantic technologies, especially in the streaming context, are becoming increasingly important for enabling interoperability in edge-cloud systems. However, in recent years, the field of semantic data streaming has been stagnant, and there are no available solutions that would fit those requirements. To fill this gap, in this contribution, a novel end-to-end RDF streaming approach is proposed (named Jelly). The method is simple to implement, yet very elastic, and designed to fit a wide variety of use cases. Its practical performance is evaluated in a series of experiments, including end-to-end throughput and latency measurements. It is shown that Jelly achieves vastly superior performance to the currently available approaches. The presented method makes significant progress towards enabling high-performance semantic data processing in a wide variety of applications, including future edge-cloud systems. Moreover, this study opens up the possibility of applying and evaluating the method in real-life scenarios, which will be the focus of further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源