论文标题

快速模拟的生成替代物:TPC情况

Generative Surrogates for Fast Simulation: TPC Case

论文作者

Ratnikov, Fedor, Maevskiy, Artem, Zinchenko, Alexander, Riabov, Victor, Sukhorosov, Alexey, Evdokimov, Dmitrii

论文摘要

高能量物理实验的模拟是广泛使用的,对于检测器和物理研究所必需。由于这种方法的计算复杂性,详细的蒙特卡罗模拟算法通常受到限制,因此需要更快的方法。生成对抗网络(GAN)非常适合将许多详细的仿真步骤汇总到替代概率密度估计器中,容易用于快速采样。在这项工作中,我们在NICA加速器复合物的MPD实验中模拟了基于GAN的快速模拟模型的功能。我们表明,我们的模型可以生成高保真性T​​PC响应,同时至少通过一个数量级加速TPC模拟。我们描述了此问题的替代表示方法,并概述了将我们的方法部署到实验软件堆栈中的路线图。

Simulation of High Energy Physics experiments is widely used, necessary for both detector and physics studies. Detailed Monte-Carlo simulation algorithms are often limited due to the computational complexity of such methods, and therefore faster approaches are desired. Generative Adversarial Networks (GANs) are well suited for aggregating a number of detailed simulation steps into a surrogate probability density estimator readily available for fast sampling. In this work, we demonstrate the power of the GAN-based fast simulation model on the use case of simulating the response for the Time Projection Chamber (TPC) in the MPD experiment at the NICA accelerator complex. We show that our model can generate high-fidelity TPC responses, while accelerating the TPC simulation by at least an order of magnitude. We describe alternative representation approaches for this problem and also outline the roadmap for the deployment of our method into the software stack of the experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源