论文标题

识别和推断福利收益而没有不符

Identification and Inference for Welfare Gains without Unconfoundedness

论文作者

Byambadalai, Undral

论文摘要

本文研究了从一个政策(例如现状策略)转换为另一个政策而导致的福利收益的识别和推断。当从观察性研究或具有不完美依从性的随机实验获得数据时,一般不会确定福利增益。我表征了福利增益的尖锐区域,并在具有和没有仪器变量的情况下在不可观察到的各种假设下获得边界。使用正交的力矩条件进行估计和上限的估计和推断,以处理无限维滋扰参数的存在。我通过考虑使用《国家职业培训合作法》研究中的实验数据考虑将个人分配给职业培训计划的假设政策来说明分析。进行蒙特卡洛模拟以评估估计器的有限样本性能。

This paper studies identification and inference of the welfare gain that results from switching from one policy (such as the status quo policy) to another policy. The welfare gain is not point identified in general when data are obtained from an observational study or a randomized experiment with imperfect compliance. I characterize the sharp identified region of the welfare gain and obtain bounds under various assumptions on the unobservables with and without instrumental variables. Estimation and inference of the lower and upper bounds are conducted using orthogonalized moment conditions to deal with the presence of infinite-dimensional nuisance parameters. I illustrate the analysis by considering hypothetical policies of assigning individuals to job training programs using experimental data from the National Job Training Partnership Act Study. Monte Carlo simulations are conducted to assess the finite sample performance of the estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源