论文标题
旋转星系的一般相对论与暗物质
General Relativity versus Dark Matter for rotating galaxies
论文作者
论文摘要
包括旋转在内的一般相对论(GR)中的一类非常一般的轴对称指标,用于讨论旋转支持星系的动力学。爱因斯坦方程的确切真空解决方案对于这种扩展的Weyl类指标,使我们能够严格推导以下内容:(i)GR旋转速度始终超过牛顿速度(这要归功于GR中的Lenz定律); (ii)银河系的非变化固有角动量($ j $)需要Weyl(veTorial)长度参数的渐近稳定性($ a $ a $) - 一种与Kerr Metric相同的行为; (iii)相同参数$ a $的渐近恒定恒定也需要旋转速度的平稳性。与Kerr公制不同的是,扩展的Weyl公制罐并且在银河系中一直持续,并且在何种条件下显示了Gauß\&\Ampére法律以及Ludwig的扩展宝石理论以及其速度领域的非伴随的非线性速率方程。已经提出了更好的估计(比牛顿理论的估计值)提出了太阳的逃逸速度和合理的旋转曲线\&\ $ j $作为我们自己的星系的估计。
A very general class of axially-symmetric metrics in general relativity (GR) that includes rotations is used to discuss the dynamics of rotationally-supported galaxies. The exact vacuum solutions of the Einstein equations for this extended Weyl class of metrics allow us to deduce rigorously the following: (i) GR rotational velocity always exceeds the Newtonian velocity (thanks to Lenz's law in GR); (ii) A non-vanishing intrinsic angular momentum ($J$) for a galaxy demands the asymptotic constancy of the Weyl (vectorial) length parameter ($a$) -a behavior identical to that found for the Kerr metric; (iii) Asymptotic constancy of the same parameter $a$ also demands a plateau in the rotational velocity. Unlike the Kerr metric, the extended Weyl metric can and has been continued within the galaxy and it has been shown under what conditions Gauß \&\ Ampére laws emerge along with Ludwig's extended GEM theory with its attendant non-linear rate equations for the velocity field. Better estimates (than that from the Newtonian theory) for the escape velocity of the Sun and a reasonable rotation curve \&\ $J$ for our own galaxy has been presented.