论文标题
关于稀疏神经网络的鲁棒性和异常检测
On the Robustness and Anomaly Detection of Sparse Neural Networks
论文作者
论文摘要
神经网络的鲁棒性和异常检测能力是其在现实世界中安全采用的关键主题。此外,最近网络的过度参数伴随着高计算成本,并提出了有关其对鲁棒性和异常检测的影响的疑问。在这项工作中,我们表明稀疏性可以使网络更强大,更好的异常检测器。为了进一步激励这一点,我们表明,预训练的神经网络包含在其参数空间内,稀疏的子网在没有任何进一步培训的情况下在这些任务上更好。我们还表明,结构化的稀疏性极大地有助于降低昂贵的鲁棒性和检测方法的复杂性,同时维持甚至改善其在这些任务上的结果。最后,我们引入了一种新方法Sensnorm,该方法使用了从适当的修剪方法得出的权重的灵敏度来检测输入中的异常样品。
The robustness and anomaly detection capability of neural networks are crucial topics for their safe adoption in the real-world. Moreover, the over-parameterization of recent networks comes with high computational costs and raises questions about its influence on robustness and anomaly detection. In this work, we show that sparsity can make networks more robust and better anomaly detectors. To motivate this even further, we show that a pre-trained neural network contains, within its parameter space, sparse subnetworks that are better at these tasks without any further training. We also show that structured sparsity greatly helps in reducing the complexity of expensive robustness and detection methods, while maintaining or even improving their results on these tasks. Finally, we introduce a new method, SensNorm, which uses the sensitivity of weights derived from an appropriate pruning method to detect anomalous samples in the input.