论文标题

超声图像中甲状腺结节的可解释诊断的多属性注意网络

Multi-Attribute Attention Network for Interpretable Diagnosis of Thyroid Nodules in Ultrasound Images

论文作者

Manh, Van T., Zhou, Jianqiao, Jia, Xiaohong, Lin, Zehui, Xu, Wenwen, Mei, Zihan, Dong, Yijie, Yang, Xin, Huang, Ruobing, Ni, Dong

论文摘要

超声(美国)是诊断甲状腺癌的主要成像技术。但是,对结节恶性肿瘤的准确识别是一项艰巨的任务,可以避免经验不足的临床医生。最近,已经提出了许多计算机辅助诊断(CAD)系统来协助此过程。但是,他们中的大多数没有提供分类过程的推理,这可能会危害他们在实际使用中的信誉。为了克服这一点,我们提出了一个新颖的深度学习框架,称为多属性注意网络(MAA-NET),该框架旨在模仿临床诊断过程。提出的模型学会了根据这些临床上相关的特征来预测结节属性并推断其恶性肿瘤。采用了多项注意计划来引起定制的注意,以改善每个任务和恶性诊断。此外,MAA-NET将结节描绘为结节的空间指导,而不是使用其他模型或人干预措施裁剪结节,以防止失去上下文信息。在包含4554名患者的大型且具有挑战性的数据集上进行了验证实验。结果表明,该方法的表现优于其他最新方法,并提供了可解释的预测,可以更好地满足临床需求。

Ultrasound (US) is the primary imaging technique for the diagnosis of thyroid cancer. However, accurate identification of nodule malignancy is a challenging task that can elude less-experienced clinicians. Recently, many computer-aided diagnosis (CAD) systems have been proposed to assist this process. However, most of them do not provide the reasoning of their classification process, which may jeopardize their credibility in practical use. To overcome this, we propose a novel deep learning framework called multi-attribute attention network (MAA-Net) that is designed to mimic the clinical diagnosis process. The proposed model learns to predict nodular attributes and infer their malignancy based on these clinically-relevant features. A multi-attention scheme is adopted to generate customized attention to improve each task and malignancy diagnosis. Furthermore, MAA-Net utilizes nodule delineations as nodules spatial prior guidance for the training rather than cropping the nodules with additional models or human interventions to prevent losing the context information. Validation experiments were performed on a large and challenging dataset containing 4554 patients. Results show that the proposed method outperformed other state-of-the-art methods and provides interpretable predictions that may better suit clinical needs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源