论文标题

ASL-Homework-RGBD数据集:45个流利和非全文签名者的注释数据集执行美国手语家庭作业

ASL-Homework-RGBD Dataset: An annotated dataset of 45 fluent and non-fluent signers performing American Sign Language homeworks

论文作者

Hassan, Saad, Seita, Matthew, Berke, Larwan, Tian, Yingli, Gale, Elaine, Lee, Sooyeon, Huenerfauth, Matt

论文摘要

我们正在使用使用Kinect V2传感器收集的美国手语(ASL)发布一个数据集,该数据集包含包含Fluent和非全文签名者的视频。该数据集是作为一个项目的一部分收集的,该项目是开发和评估计算机视觉算法的一部分,以支持新技术以自动检测ASL流利度属性。总共要求45名流利和非全体参与者执行与介绍性或中级ASL课程中使用的作业相似的签名作业作业。注释数据以确定签名的几个方面,包括语法特征和非手动标记。手语识别目前非常数据驱动,该数据集可以支持识别技术的设计,尤其是可以使ASL学习者受益的技术。对于想要对比流利和非流利签名的ASL教育研究人员来说,该数据集也可能很有趣。

We are releasing a dataset containing videos of both fluent and non-fluent signers using American Sign Language (ASL), which were collected using a Kinect v2 sensor. This dataset was collected as a part of a project to develop and evaluate computer vision algorithms to support new technologies for automatic detection of ASL fluency attributes. A total of 45 fluent and non-fluent participants were asked to perform signing homework assignments that are similar to the assignments used in introductory or intermediate level ASL courses. The data is annotated to identify several aspects of signing including grammatical features and non-manual markers. Sign language recognition is currently very data-driven and this dataset can support the design of recognition technologies, especially technologies that can benefit ASL learners. This dataset might also be interesting to ASL education researchers who want to contrast fluent and non-fluent signing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源