论文标题

BlindSpotnet:看看我们看不到的地方

BlindSpotNet: Seeing Where We Cannot See

论文作者

Fukuda, Taichi, Hasegawa, Kotaro, Ishizaki, Shinya, Nobuhara, Shohei, Nishino, Ko

论文摘要

我们将2D盲点估计作为道路场景理解的关键视觉任务。通过自动检测从车辆有利位置阻塞的道路区域,我们可以主动提醒手动驾驶员或自动驾驶系统,以实现事故的潜在原因(例如,引起人们对孩子可能会从中弹出的道路区域的注意)。在完整3D中检测盲点将是具有挑战性的,因为即使汽车配备了LiDAR,3D推理也会非常昂贵且容易出错。相反,我们建议从单眼相机中学习估计2D中的盲点。我们通过两个步骤实现这一目标。我们首先引入了一种自动方法,用于通过利用单眼深度估计,语义细分和SLAM来生成``地面''盲点训练数据,以进行任意驾驶视频。关键的想法是在3D中推理,但要从2D图像定义为那些目前看不见但在不久的将来看到的道路区域来推理。我们使用此自动离线盲点估计构建一个大规模数据集,我们称之为道路盲点(RBS)数据集。接下来,我们介绍BlindSpotnet(BSN),这是一个完全利用此数据集的简单网络,以完全自动估计框架盲点概率图,以用于任意驾驶视频。广泛的实验结果证明了我们的RBS数据集的有效性和BSN的有效性。

We introduce 2D blind spot estimation as a critical visual task for road scene understanding. By automatically detecting road regions that are occluded from the vehicle's vantage point, we can proactively alert a manual driver or a self-driving system to potential causes of accidents (e.g., draw attention to a road region from which a child may spring out). Detecting blind spots in full 3D would be challenging, as 3D reasoning on the fly even if the car is equipped with LiDAR would be prohibitively expensive and error prone. We instead propose to learn to estimate blind spots in 2D, just from a monocular camera. We achieve this in two steps. We first introduce an automatic method for generating ``ground-truth'' blind spot training data for arbitrary driving videos by leveraging monocular depth estimation, semantic segmentation, and SLAM. The key idea is to reason in 3D but from 2D images by defining blind spots as those road regions that are currently invisible but become visible in the near future. We construct a large-scale dataset with this automatic offline blind spot estimation, which we refer to as Road Blind Spot (RBS) dataset. Next, we introduce BlindSpotNet (BSN), a simple network that fully leverages this dataset for fully automatic estimation of frame-wise blind spot probability maps for arbitrary driving videos. Extensive experimental results demonstrate the validity of our RBS Dataset and the effectiveness of our BSN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源