论文标题
决策树,用于分析影响室内定位系统准确性的影响
Decision Trees for Analyzing Influences on the Accuracy of Indoor Localization Systems
论文作者
论文摘要
绝对位置精度是室内定位系统(ILS)的关键性能标准。由于IL是异质且复杂的网络物理系统,因此定位精度取决于环境,系统配置和应用程序过程的各种影响。要以可重复,可比和现实的方式确定系统的位置准确性,必须考虑这些因素。我们提出了一种策略,用于分析使用决策树与应用程序相关或与技术相关的分类组合使用决策树对IL的位置准确性的影响。使用来自120个实验的经验数据对所提出的策略进行了验证。考虑到自主移动机器人在仓库中的应用,在不同的应用驱动的影响因素下确定了超宽带和基于激光雷达的IL的准确性。最后,介绍了分析决策树以比较系统性能,找到合适的系统,优化环境或系统配置并了解不同影响因素的相关性的机会和局限性。
Absolute position accuracy is the key performance criterion of an Indoor Localization System (ILS). Since ILS are heterogeneous and complex cyber-physical systems, the localization accuracy depends on various influences from the environment, system configuration, and the application processes. To determine the position accuracy of a system in a reproducible, comparable, and realistic manner, these factors must be taken into account. We propose a strategy for analyzing the influences on the position accuracy of ILS using decision trees in combination with application-related or technology-related categorization. The proposed strategy is validated using empirical data from 120 experiments. The accuracy of an Ultra-Wideband and a LiDAR-based ILS was determined under different application-driven influencing factors, considering the application of autonomous mobile robots in warehouses. Finally, the opportunities and limitations of analyzing decision trees to compare system performance, find a suitable system, optimize the environment or system configuration, and understand the relevance of different influencing factors are presented.