论文标题
调制空间,与特殊仿射傅里叶变换相关的乘数
Modulation spaces, multipliers associated with the special affine Fourier transform
论文作者
论文摘要
我们研究了与傅立叶分析和时频分析有关的特殊仿射傅立叶变换(SAFT)的一些基本特性。我们引入了调制空间$ \ boldsymbol {m}^{r,s} _a $与saft相关,并证明,如果新调制空间之间的有界线性运算符,则使用$ a $ translation通勤,那么它是$ a $ a $ - 转换运算符。我们还建立了与SAFT相关的Hörmander乘数定理和Littlewood-Paley定理。
We study some fundamental properties of the special affine Fourier transform (SAFT) in connection with the Fourier analysis and time-frequency analysis. We introduce the modulation space $\boldsymbol {M}^{r,s}_A$ in connection with SAFT and prove that if a bounded linear operator between new modulation spaces commutes with $A$-translation, then it is a $A$-convolution operator. We also establish Hörmander multiplier theorem and Littlewood-Paley theorem associated with the SAFT.