论文标题

有关移动网络中联邦学习的参与者选择的调查

A Survey on Participant Selection for Federated Learning in Mobile Networks

论文作者

Soltani, Behnaz, Haghighi, Venus, Mahmood, Adnan, Sheng, Quan Z., Yao, Lina

论文摘要

联合学习(FL)是一种有效的分布式机器学习范式,以隐私的方式采用私人数据集。 FL的主要挑战是,最终设备通常具有各种计算和通信功能,其训练数据并非独立且分布相同(非IID)。由于在移动网络中此类设备的通信带宽和不稳定的可用性,因此只能在每个回合中选择最终设备的一小部分(也称为FL过程中的参与者或客户端)。因此,使用有效的参与者选择方案来最大程度地提高FL的性能,包括最终模型的准确性和训练时间,这一点至关重要。在本文中,我们对FL的参与者选择技术进行了审查。首先,我们介绍FL并突出参与者选择期间的主要挑战。然后,我们根据其解决方案来审查现有研究并将其分类。最后,根据我们对本主题领域最新的分析的分析,我们为FL的参与者选择提供了一些未来的指示。

Federated Learning (FL) is an efficient distributed machine learning paradigm that employs private datasets in a privacy-preserving manner. The main challenges of FL is that end devices usually possess various computation and communication capabilities and their training data are not independent and identically distributed (non-IID). Due to limited communication bandwidth and unstable availability of such devices in a mobile network, only a fraction of end devices (also referred to as the participants or clients in a FL process) can be selected in each round. Hence, it is of paramount importance to utilize an efficient participant selection scheme to maximize the performance of FL including final model accuracy and training time. In this paper, we provide a review of participant selection techniques for FL. First, we introduce FL and highlight the main challenges during participant selection. Then, we review the existing studies and categorize them based on their solutions. Finally, we provide some future directions on participant selection for FL based on our analysis of the state-of-the-art in this topic area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源