论文标题
稀疏高阶交互事件的非参数嵌入
Nonparametric Embeddings of Sparse High-Order Interaction Events
论文作者
论文摘要
高阶交互事件在现实世界应用中很常见。从这些事件中编码参与者的复杂关系的学习嵌入在知识挖掘和预测任务中至关重要。尽管现有方法取得了成功,例如泊松张量分解,它们忽略了数据基础的稀疏结构,即发生的相互作用远小于所有参与者之间可能的相互作用。在本文中,我们提出了稀疏高阶交互事件(NESH)的非参数嵌入。我们杂交稀疏的超图(张量)过程和基质高斯过程,以捕获相互作用中的渐近结构稀疏性和参与者之间的非线性时间关系。我们证明了稀疏性比的强渐近边界(包括较低和上限),这揭示了采样结构的渐近特性。我们使用批量归一化,破坏性结构和稀疏的变分GP近似来开发有效的,可扩展的模型推理算法。我们在几个现实世界的应用中证明了方法的优势。
High-order interaction events are common in real-world applications. Learning embeddings that encode the complex relationships of the participants from these events is of great importance in knowledge mining and predictive tasks. Despite the success of existing approaches, e.g. Poisson tensor factorization, they ignore the sparse structure underlying the data, namely the occurred interactions are far less than the possible interactions among all the participants. In this paper, we propose Nonparametric Embeddings of Sparse High-order interaction events (NESH). We hybridize a sparse hypergraph (tensor) process and a matrix Gaussian process to capture both the asymptotic structural sparsity within the interactions and nonlinear temporal relationships between the participants. We prove strong asymptotic bounds (including both a lower and an upper bound) of the sparsity ratio, which reveals the asymptotic properties of the sampled structure. We use batch-normalization, stick-breaking construction, and sparse variational GP approximations to develop an efficient, scalable model inference algorithm. We demonstrate the advantage of our approach in several real-world applications.