论文标题

部分可观测时空混沌系统的无模型预测

With a little help from my friends: essentiality vs opportunity in group criticality

论文作者

Aleandri, Michele, Dall'Aglio, Marco

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We define a notion of the criticality of a player for simple monotone games based on cooperation with other players, either to form a winning coalition or to break a winning one, with an essential role for all the players involved. We compare it with the notion of differential criticality given by Beisbart that measures power as the opportunity left by other players. We prove that our proposal satisfies an extension of the strong monotonicity introduced by Young, assigns no power to null players and does not reward free riders, and can easily be computed from the minimal winning and blocking coalitions. An application to the Italian elections is presented. Our analysis shows that the measures of group criticality defined so far cannot weigh essential players while only remaining an opportunity measure. We propose a group opportunity test to reconcile the two views.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源