论文标题

完全亚临界体制中的分数SDE的解决方案理论

Solution theory of fractional SDEs in complete subcritical regimes

论文作者

Galeati, Lucio, Gerencsér, Máté

论文摘要

我们考虑由分数布朗运动驱动的随机微分方程(SDE),其漂移系数允许在缩放意义上任意接近临界性。我们开发了一种全面的解决方案理论,其中包括强大的存在,逐路的唯一性,差异性的解决方案流,malliavin的可分差性和$ρ$ - 射出性。结果,我们还可以处理McKean-Vlasov,运输和连续性方程。

We consider stochastic differential equations (SDEs) driven by a fractional Brownian motion with a drift coefficient that is allowed to be arbitrarily close to criticality in a scaling sense. We develop a comprehensive solution theory that includes strong existence, path-by-path uniqueness, existence of a solution flow of diffeomorphisms, Malliavin differentiability and $ρ$-irregularity. As a consequence, we can also treat McKean-Vlasov, transport and continuity equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源