论文标题
低资源多语言声学模型融合的非线性成对语言映射
Non-Linear Pairwise Language Mappings for Low-Resource Multilingual Acoustic Model Fusion
论文作者
论文摘要
多语言语音识别已引起大幅关注,作为补偿低资源语言数据稀缺性的有效方法。端到端(E2E)建模比常规混合系统优选,这主要是由于没有词典的要求。但是,在有限的数据方案中,混合DNN-HMM仍然优于E2E模型。此外,手动词典创建的问题已通过公开培训的素式训练型(G2P)(G2P)和多种语言的IPA音译来缓解。在本文中,在低资源语言的多语言设置中提出了一种混合DNN-HMM声学模型的新型方法。针对目标语言语言信号的不同单语言模型的后验分布融合在一起。为每个源目标语言对训练了一个单独的回归神经网络,以将后者从源声学模型转换为目标语言。与ASR培训相比,这些网络需要非常有限的数据。与多语言和单语基线相比,后融合的相对增益分别为14.65%和6.5%。跨语性模型融合表明,如果不使用来自语言依赖性ASR的后代,可以实现可比的结果。
Multilingual speech recognition has drawn significant attention as an effective way to compensate data scarcity for low-resource languages. End-to-end (e2e) modelling is preferred over conventional hybrid systems, mainly because of no lexicon requirement. However, hybrid DNN-HMMs still outperform e2e models in limited data scenarios. Furthermore, the problem of manual lexicon creation has been alleviated by publicly available trained models of grapheme-to-phoneme (G2P) and text to IPA transliteration for a lot of languages. In this paper, a novel approach of hybrid DNN-HMM acoustic models fusion is proposed in a multilingual setup for the low-resource languages. Posterior distributions from different monolingual acoustic models, against a target language speech signal, are fused together. A separate regression neural network is trained for each source-target language pair to transform posteriors from source acoustic model to the target language. These networks require very limited data as compared to the ASR training. Posterior fusion yields a relative gain of 14.65% and 6.5% when compared with multilingual and monolingual baselines respectively. Cross-lingual model fusion shows that the comparable results can be achieved without using posteriors from the language dependent ASR.