论文标题

一种使用窗口统计数据来改善医学图像的分布概括的简单标准化技术

A simple normalization technique using window statistics to improve the out-of-distribution generalization on medical images

论文作者

Zhou, Chengfeng, Chen, Songchang, Xu, Chenming, Wang, Jun, Liu, Feng, Zhang, Chun, Ye, Juan, Huang, Hefeng, Qian, Dahong

论文摘要

由于医学图像的数据稀缺性和数据异质性是盛行的,因此训练有素的卷积神经网络(CNN)使用以前的标准化方法部署到新站点时的性能很差。但是,现实世界中临床应用的可靠模型应该能够很好地概括分布(IND)和分布(OOD)数据(例如,新站点数据)。在这项研究中,我们提出了一种称为窗口归一化(WIN)的新型归一化技术,以改善对异质医学图像的模型概括,这是现有标准化方法的简单而有效的替代方法。具体而言,赢得统一统计数据的范围与特征窗口上计算的本地统计数据。此功能级增强技术可以很好地规范模型,并显着改善了其OOD的概括。利用它的优势,我们提出了一种新颖的自我鉴定方法,称为Win Win,用于分类任务。通过两次向前传球和一致性约束可以轻松实现双赢,这对于现有方法来说是一个简单的扩展。各种任务(6个任务)和数据集(24个数据集)的广泛实验结果证明了我们方法的一般性和有效性。

Since data scarcity and data heterogeneity are prevailing for medical images, well-trained Convolutional Neural Networks (CNNs) using previous normalization methods may perform poorly when deployed to a new site. However, a reliable model for real-world clinical applications should be able to generalize well both on in-distribution (IND) and out-of-distribution (OOD) data (e.g., the new site data). In this study, we present a novel normalization technique called window normalization (WIN) to improve the model generalization on heterogeneous medical images, which is a simple yet effective alternative to existing normalization methods. Specifically, WIN perturbs the normalizing statistics with the local statistics computed on the window of features. This feature-level augmentation technique regularizes the models well and improves their OOD generalization significantly. Taking its advantage, we propose a novel self-distillation method called WIN-WIN for classification tasks. WIN-WIN is easily implemented with twice forward passes and a consistency constraint, which can be a simple extension for existing methods. Extensive experimental results on various tasks (6 tasks) and datasets (24 datasets) demonstrate the generality and effectiveness of our methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源