论文标题

强大的最佳井控制使用自适应多机Greenforce学习框架

Robust optimal well control using an adaptive multi-grid reinforcement learning framework

论文作者

Dixit, Atish, ElSheikh, Ahmed H.

论文摘要

增强学习(RL)是解决模型参数高度不确定的强大最佳井控制问题的有前途的工具,并且在实践中可以部分观察到系统。但是,强大的控制策略的RL通常依赖于进行大量模拟。对于具有计算密集型模拟的案例,这很容易成为计算上的棘手。为了解决这个瓶颈,引入了自适应多网格RL框架,该框架的灵感来自迭代数值算法中使用的几何多机方法原理。最初,使用基础偏微分方程(PDE)的粗电网离散化(PDE)的粗网格离散化,使用计算有效的低忠诚度模拟来学习RL控制策略。随后,模拟保真度以适应性的方式提高到最高的保真度模拟,这与模型域的最佳离散化相对应。提出的框架使用最先进的,基于无模型的RL算法,即近端策略优化(PPO)算法证明。结果显示了两项案例研究的鲁棒最佳井控制问题,这是由SPE-10模型2基准案例研究启发的。使用所提出的框架节省了其单个细网格对应物的计算成本的60-70%,可以观察到计算效率的显着提高。

Reinforcement learning (RL) is a promising tool to solve robust optimal well control problems where the model parameters are highly uncertain, and the system is partially observable in practice. However, RL of robust control policies often relies on performing a large number of simulations. This could easily become computationally intractable for cases with computationally intensive simulations. To address this bottleneck, an adaptive multi-grid RL framework is introduced which is inspired by principles of geometric multi-grid methods used in iterative numerical algorithms. RL control policies are initially learned using computationally efficient low fidelity simulations using coarse grid discretization of the underlying partial differential equations (PDEs). Subsequently, the simulation fidelity is increased in an adaptive manner towards the highest fidelity simulation that correspond to finest discretization of the model domain. The proposed framework is demonstrated using a state-of-the-art, model-free policy-based RL algorithm, namely the Proximal Policy Optimisation (PPO) algorithm. Results are shown for two case studies of robust optimal well control problems which are inspired from SPE-10 model 2 benchmark case studies. Prominent gains in the computational efficiency is observed using the proposed framework saving around 60-70% of computational cost of its single fine-grid counterpart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源