论文标题
FastheBB:将深度神经网络的Hebbian培训扩展到Imagenet级别
FastHebb: Scaling Hebbian Training of Deep Neural Networks to ImageNet Level
论文作者
论文摘要
深层神经网络的学习算法通常基于有错误的反向传播(BackProp)的监督端到端随机梯度下降(SGD)培训。 Backprop算法需要大量标记的训练样品才能获得高性能。但是,在许多现实的应用中,即使有很多图像样本,很少有标签被标记,并且必须使用半监督的样品培训策略。 Hebbian学习代表了一种有效培训的一种可能的方法;但是,在当前解决方案中,它不能很好地扩展到大型数据集。在本文中,我们提出了FastheBB,这是HEBBIAN学习的有效且可扩展的解决方案,通过1)合并在一批输入上更新计算和聚合,以及2)2)利用有效的矩阵乘法算法在GPU上。在半监督的学习方案中,我们在不同的计算机视觉基准测试方面验证了我们的方法。在训练速度方面,FastheBB的表现高达50倍,尤其是,我们首次能够将HEBBIAN算法带入ImageNet量表。
Learning algorithms for Deep Neural Networks are typically based on supervised end-to-end Stochastic Gradient Descent (SGD) training with error backpropagation (backprop). Backprop algorithms require a large number of labelled training samples to achieve high performance. However, in many realistic applications, even if there is plenty of image samples, very few of them are labelled, and semi-supervised sample-efficient training strategies have to be used. Hebbian learning represents a possible approach towards sample efficient training; however, in current solutions, it does not scale well to large datasets. In this paper, we present FastHebb, an efficient and scalable solution for Hebbian learning which achieves higher efficiency by 1) merging together update computation and aggregation over a batch of inputs, and 2) leveraging efficient matrix multiplication algorithms on GPU. We validate our approach on different computer vision benchmarks, in a semi-supervised learning scenario. FastHebb outperforms previous solutions by up to 50 times in terms of training speed, and notably, for the first time, we are able to bring Hebbian algorithms to ImageNet scale.